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Wave-function reconstruction of complex fields obeying nonlinear parabolic equations

Yaw-Ren E. Tan, David M. Paganin, Rotha P. Yu, and Michael J. Morgan
School of Physics and Materials Engineering, Monash University, Victoria 3800, Australia

~Received 25 June 2003; published 11 December 2003!

We present a generalized Gerchberg-Saxton~GS! algorithm for reconstructing a~211!-dimensional complex
scalar wave field which obeys a known nonlinear nondissipative parabolic differential equation, given knowl-
edge of the wave-field modulus at three or more values of an evolution parameter such as time. This algorithm
is used to recover the complex wave function of a~211!-dimensional Bose-Einstein condensate~BEC! from
simulated modulus data. The Gross-Pitaveskii equation is used to model the dynamics of the BEC, with the
modulus information being provided by a temporal sequence of simulated absorption images of the condensate.
The efficacy of the generalized GS algorithm is examined for a wide range of simulation conditions, including
strong nonlinearities, vortex states and Poisson noise. The general form of this algorithm, which allows one to
reconstruct a time-dependent wave function, will be useful for studying the phase dynamics of topological
defects in coherent quantum systems.
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I. INTRODUCTION

The celebrated ‘‘phase problem’’ poses the question
determining the phase of a complex function using inform
tion about its modulus, supplemented by any relevanta pri-
ori knowledge. Solutions to particular phase problems~i.e.,
phase retrieval! have been studied in fields as diverse as
tronomical imaging@1#, crystallography@2#, optical micros-
copy @3#, electron microscopy@4#, point projection imaging
@5#, and x-ray diffraction@6#. These examples deal with th
problem of phase retrieval for matter or radiation wave fie
whose evolution is governed by linear partial different
equations. However, not all systems are governed by lin
equations. For example, nonlinear electromagnetic w
phenomena such as solitons@7# have long been studied b
the nonlinear optics community. Nonlinear evolution also o
curs for water waves@8#, acoustic waves@9#, and plasmas
@10#. A topical example of nonlinear wave-field evolution
Bose-Einstein condensation, the dynamics of which are m
eled at zero temperature by a nonlinear parabolic partial
ferential equation for the complex order parameter—
Gross-Pitaevskii equation@11–13#.

There is emerging interest in the problem of phase
trieval for wave fields which obey nonlinear equations~see,
e.g., Ref.@14,15#!. Such studies have made first steps
wards the goal of routinely determining phase for stron
nonlinear systems. An important motivation for these stud
is the fact that the canonical method of phase reconstruc
namely, interferometry@16#, is not applicable to strongly
nonlinear systems. Interferometric phase determination f
because the superposition principle does not hold for non
ear wave fields: the superposition of the ‘‘reference wav
and the wave field under study is not a valid solution to
given nonlinear equation, even if the two wave fields se
rately satisfy this equation.

The aim of this paper is to derive a phase-retrie
method, applicable to nonlinear complex fields, which g
eralizes the Gerchberg-Saxton~GS! algorithm @17#. This is
applied to the reconstruction of complex wave fields t
obey known ~211!-dimensional nondissipative nonlinea
parabolic partial differential equations, given as data
1063-651X/2003/68~6!/066602~9!/$20.00 68 0666
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modulus of the wave field at three or more values of a giv
evolution parameter. This evolution parameter is typica
either timet or propagation distancez; we refer to the evo-
lution parameter as ‘‘time’’ for the remainder of the pape
Solution to a given phase problem amounts to obtaining t
knowledge of a quantum-mechanical complex wave field~as
encoded in the complex scalar wave function, macrosco
wave function, or order parameter!, or of a classical scala
radiation wave field~as encoded in its complex analytic sig
nal @16#!, given as data the modulus of the wave over cert
surfaces in space time. We will refer to such modulus data
‘‘holographic snapshots,’’ since they constitute in-line hol
grams in the sense originally formulated by Gabor@18#.

The outline of the paper is as follows. In Sec. II we d
scribe the algorithm for the phase retrieval of waves obey
known nonlinear parabolic equations, given a set of ho
graphic snapshots. These snapshots may be supplement
any relevanta priori knowledge which places constraints o
the value of the wave function on the surfaces over which
holographic snapshots are taken. This algorithm is a ge
alization of the famous method of phase retrieval due to G
chberg and Saxton@17,19#. As an example of the applicatio
of these ideas to a strongly nonlinear vortex-riddled syste
Sec. III gives a robust means for recovering the wave fu
tion of a~211!-dimensional Bose-Einstein condensate wh
evolves according to the Gross-Pitaevskii equation, giv
simulated images of the modulus of the wave function
three or more times. We highlight the efficacy of the alg
rithm and discuss its applicability to experimental obser
tions. We offer a discussion in Sec. IV, and conclude w
Sec. V.

II. GENERALIZED GERCHBERG-SAXTON ALGORITHM

The Gerchberg-Saxton~GS! algorithm @17,19# is a well-
known solution to the following phase problem: given t
modulusuC(r')u of a complex scalar function of two spac
variablesr'[(x,y), together with the modulusuF̂$C(r')%u
of its Fourier transform with respect tor' , can one recon-
struct the complex wave functionC(r')? This phase prob-
lem, now known as the ‘‘Pauli problem,’’ was first consid
©2003 The American Physical Society02-1
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ered by Pauli in the context of quantum mechanics@20#.
In its original and simplest form@17#, the Gerchberg-

Saxton algorithm claims the following iterative solution
the Pauli problem:

C~r'!5 lim
N→`

~ P̂1F̂21P̂2F̂ !NuC~r'!u. ~1!

Here,N is the number of iterations of the algorithm~taken to
be sufficiently large for convergence to be attained!, F̂ de-
notes the operator for Fourier transformation with respec
r' , F̂21 is the inverse Fourier transform,P̂1 is a projection
operator which replaces the modulus of the function
which it acts by the known functionuC(r')u, and P̂2 is a
projection operator which replaces the modulus of the fu
tion on which it acts by the known functionuF̂C(r')u. Note
that all operators in Eq.~1! act from right to left on the initial
estimateuC(r')u for the reconstructed wave function, whic
has the correct modulus and a constant phase.

Convergence of this algorithm is often problematic, w
stagnation being a common problem@21#. Modifications
such as those due to Fienup@21# may be used to achieve
more robust algorithm for attacking a given Pauli proble
although one might argue that such modifications lack
compelling simplicity of Gerchberg and Saxton’s origin
proposal. For recent work employing the Gerchberg-Saxt
Fienup algorithm, see Weierstallet al. @22# and references
therein.

In this article, we do not follow Fienup and others
seeking modified forms of the Gerchberg-Saxton algorit
which better solve the Pauli problem. Rather, we turn
attention to a class of related but different phase proble
which make use of slightly larger datasets of three or m
images. With this in mind, note that the Fourier transfo
operator, which appears in Eq.~1!, is unitary. This unitary
operator may be replaced by a different unitary operator@23#,
such as the Fresnel transform@24# ~which evolves a solution
to the linear parabolic equation forwards or backwards
time!; note that the Fresnel transform is formally identical
the time evolution operator for the~211!-dimensional free-
space time-dependent Schro¨dinger equation. One is therefor
led to a variant of the GS algorithm using a sequen
of two-dimensional images related to one another
the Fresnel transform@25#. Superior results may be
obtained when more than two images are incorporated
this algorithm @26#. In particular, Allenet al. @27,28# used
a through focal series~TFS! $uC(r' ,t1)u,uC(r' ,t2)u,
uC(r' ,t3)u,•••% of three or more images to demonstrate t
robustness of the GS algorithm in the presence of both n
and vortices; they did this for the case of a wave funct
obeying the linear Schro¨dinger equation

~ ia]/]t1¹'
2 !C~r' ,t !50, ~2!

where a is a constant,¹'
2 is the Laplacian in the two-

dimensional plane containingr' , and t is the propagation
distance for a time-independent paraxial beam along a no
nal optic axis@29#. When three images were employed, a
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plication of a modified GS algorithm with Fourier transform
replaced by Fresnel transforms, namely

C~r' ,t1!5 lim
N→`

~ P̂1Û2,1P̂2Û3,2P̂3Û2,3P̂2Û1,2!
NuC~r' ,t1!u,

~3!

yielded extremely robust and stagnation-free converge
to the correct solution for a wide variety of numeric
experiments. Here, the Fresnel transformÛm,n ~time-
evolution operator! for Eq. ~2! is defined byÛm,nC(r' ,tm)
5C(r' ,tn), wherem,n51,2,3, andP̂m is a projection op-
erator which replaces the modulus of the function on wh
it acts by the known functionuC(r' ,tm)u. The robustness o
this algorithm, when applied to three or more images, w
maintained even in the presence of spontaneously-gene
wave field vortices.

Both Eqs.~1! and ~3! apply an iterated sequence of o
erators~projection operator, unitary operator, projection o
erator, unitary operatoretc.! to an initial estimate for the
reconstructed wave function which has the correct modu
and a constant phase. The three images employed in Eq~3!
were found to lead to considerably greater robustness in
merical experiments when compared to reconstructi
based on two images. This robustness was maintained w
the Fresnel transform in Eq.~3! was replaced with a more
general class of linear unitary operators describing cohe
shift-invariant linear imaging systems@30#.

In the context of the present paper, we explore generali
forms of Eq.~3! which replaceÛ with a unitary nonlinear
evolution operator. Consider the following class of nonline
nondissipative parabolic equations~cf. Ref. @15#!

~ ia]/]t1g¹'
2 1b1V1 f ~ uCu!!C50, ~4!

wherea,b,g are real numbers,V[V(r' ,t) is a real poten-
tial, f is a real function of a real variable, andC[C(r' ,t) is
a complex function of two space variablesr'[(x,y) and
one evolution parametert. Special cases of our class of no
dissipative nonlinear equations include the~211!-
dimensional linear and nonlinear Schro¨dinger equations@31#,
the paraxial equation of classical scalar optics@29#, the ~2
11!-dimensional Gross-Pitaevskii equation@11–13#, and the
cubic-quintic parabolic equation for ‘‘liquid light’’@32#.

We address the following nonlinear phase proble
Given a consecutive series$uC(r' ,t1)u,uC(r' ,t2)u, . . . ,
uC(r' ,tM)u% of M>3 holographic snapshots, wher
C(r' ,t) obeys a known equation which is a special case
Eq. ~4!, can we reconstruct the full complex wave functio
C(r' ,t)? The wave function is to be reconstructed for
times lying in the time intervaltP(t12D1 ,tM1D2), where
the positive real numbersD1 and D2 are sufficiently small
that, at the numerical accuracy to which the wave function
approximated and the modulus data measured, the valu
the wave function for anytP(t12D1 ,t1) or tP(tM ,tM
1D2) may be accurately obtained from the bounda
values C(r' ,t1) and C(r' ,tM), respectively. Similarly
utm2tm11u, wherem51,2, . . . ,M21, must be sufficiently
small that, at the numerical accuracy to which the wave fu
2-2
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WAVE-FUNCTION RECONSTRUCTION OF COMPLEX . . . PHYSICAL REVIEW E68, 066602 ~2003!
tion is approximated and the modulus data measu
C(r' ,t) for any tP(tm ,tm11) may be accurately obtaine
from either of the respective boundary valuesC(r' ,tm) or
C(r' ,tm11).

We postulate that the following generalized Gerchbe
Saxton ~GGS! algorithm gives a solution to our nonlinea
phase problem~cf. Ref. @30#!:

C~r' ,t1!5 lim
N→`

S )
i 51

M21

P̂i8Û i 11,i )
i 5M

2

P̂i8Û i 21,i D N

uC~r' ,t1!u.

~5!

Since the class of Eqs.~4! is nondissipative, the assoc
ated nonlinear time evolution operatorÛ will be unitary: we
define this operator via the equationÛm,nC(r' ,tm)
5C(r' ,tn), with Û being such thatC is a solution to Eq.
~4!. If no a priori knowledge is assumed, thenP̂m8 5 P̂m . If,
however, additional constraints on any or each of the w
functionsC(r' ,tm) are given, thenP̂m8 5 P̂m9 P̂m , whereP̂m9
is an operator which projects the wave function upon wh
it acts into the space of wave functions consistent with
givena priori knowledge. For example,P̂m9 might be used to
impose sucha priori knowledge as finite support for a give
value of t.

Equation~5! contains as special cases the GS algorit
@17# of Eq. ~1!, Misell’s algorithm@25#, the TFS algorithm of
Eq. ~3!, and variations of the TFS used in Ref.@30#. This
algorithm retains the compelling simplicity of Gerchberg a
Saxton’s original proposal, as Eqs.~1! and~5! both comprise
an iterated sequence of unitary evolution and projection
erators, which is applied to an initial estimate of the reco
structed wave function that has the correct modulus an
constant phase.

III. RECOVERING THE WAVE FUNCTION
OF A BOSE-EINSTEIN CONDENSATE

Bose-Einstein condensates@33,34# give an interesting
arena for retrieving the phase distribution of a wave funct
whose underlying dynamics are nonlinear. Such condens
provide the opportunity to engineer a complex-valued m
roscopic wave function~order parameter!. For example, ro-
tating a Bose-Einstein condensate~BEC! gives rise to quan-
tized vortices @35,36# which can be observed usin
absorption or dispersive imaging techniques@37#. In this
context, phase retrieval gives a useful tool for studying
dynamics of topological phase defects@38#. In this section,
we apply a special case of Eq.~5! to the problem of recon-
structing the wave function of a~211!-dimensional Bose-
Einstein condensate.

A. Modeling of a „2¿1…-dimensional BEC

To simulate a BEC we employ a mean-field approach
ing the Gross-Pitaevskii~GP! equation@11–13#, neglecting
quantum and thermal fluctuations. We assume confinem
of the BEC in thez direction, which allows us to describe th
condensate in the two-dimensional transverse planer'
06660
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[(x,y). The simulated BEC is confined in a trap model
by a harmonic oscillator potential@39#

Vtrap~r'!5 1
2 mv2r'

2 , ~6!

where m is the mass of the atomic speciesr'
2 [ur'u2, and

vx ,vy are oscillator frequencies which determine the tr
frequency viav5Avx

21vy
2. We now introduce dimension

less harmonic oscillator units@40# in which the unit of length
aho corresponds to the average width of the Gauss
ground-state wave function:aho5A\/(mvho), where vho

5Avxvy is the geometric mean of the oscillator frequenci
Using rescaled variables for whichvho

21 , aho , and\vho are
the units of time, length, and energy, respectively, the tim
dependent GP equation may be written as

i
]

]t
C5@2 1

2 ¹'
2 1 1

2 r'
2 1V~ uCu!#C, ~7!

whereC[C(r' ,t) is the condensate wave function norma
ized to unity, and¹'

2 is the Laplacian in thex-y plane. We
identify the nonlinear termV(uCu)5guCu2 with atomic in-
teractions in the Bose gas, whereg is the coupling constan
~self-interaction coefficient!. This constant is related to th
s-wave scattering lengthas of a binary collision by g
54pNas /aho , whereN is the number of atoms in the con
densate@40#.

To simulate the BEC, Eq.~7! was evolved through time
using a fourth order Runge-Kutta method with spatial s
Dh50.15 and time stepDt50.003. These parameters we
chosen to ensure stability of the numerical integrat
scheme, and were used for all simulations in this paper
these simulations, the initial condition used was the grou
state wave function of the condensate in the given trapp
potential. This ground state was calculated by using the tim
independent GP equation that follows from substituti
C(r' ,t)5C(r')e2 imt into Eq.~7!, wherem is a real energy
parameter~chemical potential!. The time-independent GP
equation is then given by

mC~r'!5@2 1
2 ¹'

2 1 1
2 r'

2 1guC~r'!u2#C~r'!. ~8!

Equation~8! was solved for the ground-state wave functi
using a diffusion Monte Carlo method@41#, which finds the
minimum energy configuration using a steepest descent
proach. In the absence of interactions (g50), Eq. ~8! re-
duces to that for the quantum harmonic oscillator, who
ground state is a Gaussian wave function. However, fog
.0 the condensate is broadened relative to theg50 case, as
a result of repulsive atomic interactions.

B. Absorption imaging of a BEC

BECs can be imaged using absorption, fluorescence,
dispersive techniques@39#. We shall consider simulated ab
sorption images as input to the GGS algorithm in Eq.~5!.
However, we emphasize that dispersive imaging is equ
well suited to the phase-retrieval methodology describ
2-3
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here, provided that one is able to use a dispersive imag
compute the probability density which forms the input to t
GGS algorithm@37#.

Here, we assume a thin lens approximation and cons
the case where coherent laser probe light, propagating in
z direction, arrives perpendicular to thex-y plane containing
the condensate. The probe light field is assumed to be
form immediately upstream of this plane, and the conden
is assumed to be well approximated by two-level atoms
der the rotating-wave approximation. The intensity of t
probe light at the exit surface of the BEC is then@39#

I ~r�!5I 0expS 2
s0ñ

11d2D , ~9!

whereI 0 is the incident intensity of the probe beam,s0 is the
resonant scattering cross section,ñ[*n(r' ,z)dz is the inte-
grated number density of atoms in the condensate, andd is
the detuning factor measured in half linewidths of the pro
laser. This detuning factor is defined asd5(v
2v0)/((1/2)G), wherev0 is the resonant frequency of th
BEC, v is the frequency of the probe light, andG is the
linewidth of the laser. Note that we identifyñ(r' ,t) with
NuC(r' ,t)u2.

In all simulations presented in this paper, Eq.~9! was used
to model the process of forming an absorption image. Bef
being used as input into Eq.~5!, each series of simulate
absorption images was digitized to 16 bits. This w
achieved by adjusting the detuning parameterd, which ap-
pears in the normalized absorption coefficients0 /(11d2),
to ensure that the range of digitized transmitted inten
signals lies within the range 500–65 000 counts.

C. Case I—Interference of two BECs

We first consider the situation where two spatially se
rated BECs are created in a double-well trapping poten
and then allowed to expand and overlap after the trap
turned off @42# ~‘‘Case I’’ !. This double well potential was
modeled by replacing the trap potential (1/2)r'

2 in Eq. ~7!
with (1/2)r'

2 1Vlaser , whereVlaser is the potential associ
ated with a thin static sheet of laser light bisecting the tr
We modeled the potential of this sheet with the Gaussian

Vlaser5a exp@2bx~x2x0!22by~y2y0!2#, ~10!

wherea5100 is the peak value of the potential,bx50.306
andby50.010 are inversely proportional to the width of th
laser beam in thex and y directions, and (x0 ,y0)5(0,0)
gives the centroid of the beam.

In this and all subsequent simulations, the Cartesian c
dinate system (x,y) is mapped onto a square lattice of 2m

32m pixels, wherem is a positive integer. The origin (x,y)
5(0,0) of Cartesian coordinates is identified with the ‘‘ce
tral’’ pixel, whose location is reached by first moving 2m21

21 pixels to the right of the bottom-left pixel, and the
moving 2m2121 pixels above the resulting lattice point. Th
physical width and height of each pixel was, in all simu
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tions, equal to the spatial stepDh50.15; the time step was
in all cases equal toDt50.003.

Using the double-well potential (1/2)r'
2 1Vlaser , and 2m

5256 pixels, the BEC was modeled with three different se
interaction coefficients:g50, g5100, andg51000. The
latter two values forg correspond to a high degree of no
linearity. The initial condition~ground state! of the BEC was
generated for each value ofg using the procedure describe
in Sec. III A. Figs. 1~a! and 1~b! show the modulus and phas
of theg51000 case of the interference of two spatially sep
rated BECs, respectively,t5300 time steps after the trap ha
been switched off, allowing the BEC pair to expand a
overlap. Note that Fig. 1~c! will be discussed in Sec. III E.

D. Case II—Stirred condensate

We next consider stirring a BEC with a tightly focuse
blue-detuned laser beam@43,44# ~‘‘Case II’’ !. This blue-
detuned laser light was modeled by a moving Gaussian
tential

FIG. 1. Grayscale plots of~a! simulated modulus and~b! phase
of two overlapping BECs, 300 time steps after a double-well t
has been turned off and the condensate allowed to expandg
51000). ~c! Phase retrieved withN5300 iterations of Eq.~5!,
using as input data the five simulated absorption imagest
5100, 150, 200, 250, and 300 time steps after the trap was tu
off. In all phase maps, which are modulo 2p, black denotes a phas
of 0 and white denotes 2p.
2-4
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Vlaser5a exp@2bx~x2x02yxt !
22by~y2y02yyt !

2#.
~11!

The centroid of this potential has initial coordinates (x0 ,y0),
with this centroid being swept through the condensate w
velocity (yx ,yy). The Gaussian potential of the moving las
beam was again incorporated into the GP equation~7! by
using the potential (1/2)r'

2 1Vlaser . The parameters used i
Eq. ~11! were a530, bx5by53, (x0 ,y0)5(21,211),
(yx ,yy)5(0,2). The ground-state initial condition was ge
erated over a 1283128 pixel grid without the laser beam
with g5100. We then ‘‘switched on’’ the moving laser po
tential at t50. The parameters chosen for the potential
Eq. ~11! are such that the stirring laser beam, which is i
tially outside the simulation frame, is passed through
condensate before leaving the simulation frame att52900
timesteps. Figures 2~a! and 2~b! show the modulus and phas
of the condensate wave function, respectively, 4600 t
steps after the stirring was completed. A number of coun
propagating quantized vortex pairs have been nucleate

FIG. 2. Grayscale plots of~a! modulus and~b! phase of a
simulated BEC, 4600 time steps after completing stirring of
ground state of a harmonic trap with a moving laser spotg
5100). ~c! Phase retrieved withN520 iterations of Eq.~5!, using
as input data the nine simulated absorption images at
53800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, and 4
time steps after stirring was commenced. In all phase maps, w
are modulo 2p, black denotes a phase of 0 and white denotes 2p.
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the laser stirring, these being evident as screw dislocation
the multivalued phase@38# of the wave function in Fig. 2~b!.
Figure 2~c! will be discussed in the following section.

E. Phase Retrieval of the BEC Wave function

Here, we model the phase retrieval of a BEC wave fu
tion using Eq.~5!, in which the nonlinear unitary time evo
lution operatorÛ is determined by Eq.~7!. The input to the
GGS algorithm in Eq.~5! is obtained from three or more
sequential absorption images of the BEC. To synthesize th
absorption images the condensate is modeled accordin
either Case I or II, allowed to evolve for a fixed time, an
then imaged according to Eq.~9!. The natural logarithm of
each of these absorption images is proportional to the mo
lus of the condensate wave function.

Since the condensate is disturbed by the absorptive im
ing process, experimental recording of the multiple imag
used in Eq.~5! requires identical systems to be prepared a
evolved for different times before being imaged. In this w
it is possible to record the dynamics of an evolving BE
@45#, and hence obtain the necessary data for wave func
reconstruction using Eq.~5!. Alternatively, one may use
quantitative dispersive imaging techniques such as those
scribed by Turneret al. @37# to nondestructively obtain suc
a series of images using a single condensate.

Figure 1 shows the phase reconstruction for the nonlin
double-well simulation described in Sec. III C. Here a s
quence of five images, att5100,150,200,250, and 300 tim
steps after switching off the double-well trap, was used
input for Eq. ~5!. This noise-free simulation required 30
iterations of Eq.~5! to yield the reconstructed phase att
5300, as shown in Fig. 1~c!. Since the retrieved phase
only known up to an additive constant, the phase of both
true and reconstructed wave functions have been set top at
the central pixel.

Qualitatively, the phase in Fig. 1~c! is well reconstructed
over all parts of the image for which the probability dens
is non-negligible. However, to give a quantitative measure
the closeness of thekth iterate C̃ (k) of the reconstructed
wave function to the true wave functionC, we calculate the
normalized root-mean-square~RMS! error by

sC
(k)5! (

i 50

2m21

(
j 50

2m21

uC i j ~ t !2C̃ i j
(k)~ t !u2

(
i 50

2m21

(
j 50

2m21

uC i j ~ t !u2
, ~12!

where i , j denote the grid coordinates in the 2m32m pixel
image. Using this error metric, the RMS error in the wa
function reconstruction of Fig. 1 is 2.731023. Having com-
pleted theg51000 ‘‘Case I’’ reconstruction, the analysis wa
repeated for two further values ofg, namely,g50 and g
5100. Theg50 version of Case I, with three images att
5400, 600, and 800 time steps after switching off the tr
required 498 iterations to yield a RMS reconstruction er
of 6.931023. The g5100 version of Case I, with five im-

e

0
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ages att5400,500,600,700, and 800 time steps, requi
498 iterations to yield a RMS reconstruction error of 5
31023. All of these RMS reconstruction errors compare
vorably with the RMS error of approximately 1/A216'4
31023 which was introduced by the 16-bit digitization o
the simulated absorption images, as described at the en
Sec. III B.

Figure 2 shows the phase reconstruction for
stirred BEC ~‘‘Case II’’ ! in the presence of multiple
vortices created using the procedure described
Sec. III D. A sequence of nine images, att
53800, 3900, 4000, 4100, 4200, 4300, 4400, 4500,
4600 time steps after commencing the stirring, was use
input for Eq. ~5!. This noise-free simulation required 20 i
erations of Eq.~5! to yield the reconstructed phase att
54600 time steps, as shown in Fig. 2~c!. The phase of both
the true and reconstructed wave functions was set top at the
central pixel. Using the error metric in Eq.~12!, the error in
the wave function reconstruction of Fig. 2 is 6.231023.
Again, this compares favorably to the RMS error in the inp
data.

To give more insight into the convergence properties
wave function reconstruction using Eq.~5!, Fig. 3 plots the
RMS errorsC

(k) versus iteration numberk for the four sce-
narios described previously~i.e., Case I with g
50,100,1000 and Case II withg5100). We see that, in al
cases, the RMS error exponentially approaches a value c
parable to the RMS error ('431023) which was introduced
into the input data by the 16-bit digitization of the simulat
absorption images. Interestingly, the case with multiple v
tices has a significantly more rapid convergence than
three vortex-free cases. Of the vortex-free cases, it was
most strongly nonlinear (g51000) that had the most rapi
convergence.

Since the act of imaging a BEC perturbs the condensat
is preferable to use as few probe photons as possible in fo
ing an image of this quantum state: too many absorbed p
tons will destroy the condensate. In this context, we inve
gate the performance of Eq.~5! in the presence of significan

FIG. 3. RMS errorsC
(k) in wave function reconstruction, calcu

lated using Eq.~12!, vs iteration numberk. Case I,g50 ~solid line!;
Case I,g5100~dotted line!; Case I,g51000~dashed line!; Case II,
g5100 ~dot-dashed line!.
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amounts of noise in the simulated absorption-contrast
ages. This noise was added by taking the noise-free 16
absorption images described in Sec. III B, and then replac
the intensity at each pixel with a random number drawn fr
a Poisson distribution; this distribution had a mean given
the noise-free photon count at each particular pixel, with
photon count being proportional to the noise-free signal
each pixel. The noise added to a given image is fixed o
and for all by specifying the RMS Poisson noisej on the the
maximum intensity of the noise-free image; this correspo
to a ray of the laser probe beam which does not pass thro
the condensate. Evidently, the RMS noise levelsj in the
absorption image will be greater~possibly much greater!
thanj. Table I summarizes the RMS errorsC

(k) in the recon-
struction, withj52.831022, for the four scenarios investi
gated in this paper~i.e., Case I withg50,100,1000 and Cas
II with g5100). All of these RMS errors compare favorab
with the RMS errorsj introduced in simulating each of th
noisy absorption images, with a maximum ‘‘noise amplific
tion factor’’ of sC

(k)/sj'1.36.
We close this series of simulations by studying the infl

ence, upon the rate of convergence of the wave func
reconstruction, of changing both~i! the number of images
used, and~ii ! the number of time steps allowed to elap
between consecutive images. For this final numerical stu
we work with Case I usingg51000. The numerical result
are shown in Fig. 4. We see that the algorithm conver
exponentially rapidly to the ‘‘noise floor’’ for five out of the
six studies presented there. We also note, from Fig. 4,
the algorithm’s exponential rate of convergence is increa
when one increases the number of images, while keep
constant the number of time steps between each of th
images. Convergence was not achieved for the study wh
had both the largest number of time steps between ima
and the smallest number of images~three images, 100 time
steps in between!. For this nonconvergent case, keeping t
number of images fixed while decreasing the number of ti
steps between images~from 100 to 50! led to convergence.

Why did the algorithm fail to converge when the numb
of time steps between images were too large? This is a m
festation of the well-known ‘‘finite memory’’ of nonlinea
systems: sensitive dependence on initial conditions imp
that too great an elapsed time, between a pair of fin
precision numerically evolved wave functions, precludes
curately tracing a direct causal link between the two. T
presence of positive Lyapunov exponents in a volum
preserving phase-space flow implies that the ball of ini
conditions, each consistent with the finite precision to wh

TABLE I. RMS error sC
(k) of the wave function reconstruction

in the presence of noise. The error was measured afterk iterations,
at which point the algorithm had converged. All simulations, w
the exception of those indicated with an asterisk, were vortex f

g j sj k sC
(k)

0 0.028 0.32 498 0.38
100 0.028 0.22 498 0.30
1000 0.028 0.19 200 0.21
100* 0.028 0.21 20 0.25
2-6
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the wave function is specified, will be folded/mixed throu
the accessible phase space during the flow governed by
nonlinear evolution equation@46#. Too great an evolution
time between holographic snapshots will therefore imply t
the reconstruction fails, since in evolving from snapshot
snapshot the result of applying the time-evolution operato
strongly perturbed by fluctuations below the noise level
the system.

IV. DISCUSSION

A. Wave function movies

The algorithm of Eq.~5! reconstructs the wave func
tion C(r' ,t1) corresponding to timet1, given the moduli
of the wave function at all times in the ordered s
$t1 ,t2 ,•••,tM%. Having obtainedC(r' ,t1), one can obtain
C(r' ,t2) via C(r' ,t2)5 P̂2Û1,2C(r' ,t1), a procedure tha
can be recursively applied to give

C~r' ,t j !5 )
i 5 j 21

1

~ P̂i 11Û i ,i 11!C~r' ,t1!,2< j <M .

~13!

One therefore reconstructs the ordered wave function
quenceC(r' ,t j ), j 51,•••,M corresponding to all times in
the set$t1 ,t2 ,•••,tM%. Moreover, one may also obtain
wave function ‘‘movie’’ by reconstructing the said wav
function at any number of timest lying in the continuumt
P(t12D1 ,tM1D2) ~see Sec. II!. To reconstruct the wave
function C(r' ,t i 8) at any given time t i 8P(t12D1 ,tM
1D2), first choose a membert i 9 of $t1 ,t2 ,•••,tM%, which
minimizes ut i 82t i 9u, and then form Û i 9,i 8C(r' ,t i 9)
5C(r' ,t i 8). This allows one to reconstruct a temporal s
quence of complex wave functions, which is useful in t
context of studying both nonlinear and linear wave funct

FIG. 4. RMS errorsC
(k) of the reconstructed wave function as

function of iteration numberk. The different lines represent differ
ent retrieval parameters for Case I withg51000, using: three im-
ages with 100 time steps between images~long dash!; five images
with 25 time steps between images~dash ellipsis!; nine images with
25 time steps~dash dot!; three images with 50 time steps~solid
line!; five images with 50 time steps~dotted line!; nine images with
50 time steps~short dash!. In all cases, the first image correspond
to t5100 time steps after turning off the double-well trap.
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dynamics. This includes the topological phase dynamics
sociated with the nucleation and coalescence of quant
vortices@38#.

B. Interference versus interferometry for nonlinear fields

The GP equation is nonlinear and therefore does not o
the superposition principle: ifC1(r' ,t) and C2(r' ,t) are
both solutions to Eq.~4!, thenC1(r' ,t)1C2(r' ,t) will not
in general be a solution. Therefore use of the term ‘‘interf
ence’’ to describe the fringes of Fig. 1~a!, while accurate,
must not be visualized as arising from the linear superp
tion of two BEC wave functions that are separately va
solutions to Eq.~4!. Notwithstanding this, we make the e
ementary remark that the concept of interference transce
the linearity assumption upon which the superposition pr
ciple is predicated.

The essence of interference is this: when two spatia
separated wave functions are allowed to come into con
with one another, the square modulus of the resulting dis
bance is not equal to the sum of the squared moduli of e
separate disturbance. The difference between the sum o
squared moduli of each separate disturbance, and the sq
modulus of the resulting disturbance, is the ‘‘interferen
term.’’ In this context let us consider, as an initial conditio
a pair of ~211!-dimensional wave functionsC1(r' ,t) and
C2(r' ,t) which are spatially separated att5t0, i.e.,
** uC1(r' ,t0)C2(r' ,t0)udr''0.

Linear case:If the evolution of these initially separate
disturbances is governed by a linear equation, then inter
ence effects occur ifuC1(t)u21uC2(t)u2ÞuC1(t)1C2(t)u2
at some later timet.t0. Here, C1(t),C2(t), and C1(t)
1C2(t) are all solutions to the relevant linear equation, a
functional dependence onr' has been dropped for clarity
The associated linear interference termI L(t) is

I L~ t ![uC1~ t !1C2~ t !u22uC1~ t !u22uC2~ t !u2

52uC1~ t !uuC2~ t !ucos@f1~ t !2f2~ t !#, ~14!

where C j (t)[uC j (t)uexp„if j (t)… and f j (t)5argC j (t),
with j 51,2. Linear interferometric phase determination ai
to obtain the phase difference cos@f1(t)2f2(t)# from mea-
surements ofI L(t),uC1(t)u, and uC2(t)u; typically, one of
the wave phases@say,f1(t)] is a known ‘‘reference’’ wave
front and one seeks to determinef2(t).

Nonlinear case:If, instead, our initially separated distur
bances are governed by a nonlinear equation, then inte
ence effects occur whenuC1(t)u21uC2(t)u2ÞuC1(t)
1C2(t)1k@C1(t),C2(t)#u2, where C1(t),C2(t), and
C1(t)1C2(t)1k@C1(t),C2(t)# are all solutions to the rel-
evant nonlinear equation, withk@C1(t),C2(t)# being an ap-
propriate interaction term which is generated whenC1(t)
andC2(t) are not spatially separated. The associated non
ear interference termI NL(t) is

I NL~ t ![uC1~ t !1C2~ t !1k@C1~ t !,C2~ t !#u22uC1~ t !u2

2uC2~ t !u2

5I L~ t !12Re~k* @C1~ t !,C2~ t !#@C1~ t !1C2~ t !# !

1uk@C1~ t !,C2~ t !#u2, ~15!
2-7
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which reduces to Eq.~14! whenk50. WhenkÞ0, Eq.~15!
could, in principle, be used as a starting point for nonlin
interferometric phase determination; however, the resul
nonlinear equations are likely to be difficult to solve.

For both linear and nonlinear interferometry, the me
sured interference term is sensitive to the phase of the w
field, allowing one to consider the problem of inferring th
phase from measurements of the wave field modulus. Th
the idea behind interferogram analysis, at least for the lin
case, and it is motivated by the fact that it is probabil
density~or intensity! rather than phase which is measured
existing detectors of high-frequency fields.

Rather than seeking an interferometric solution to
problem of phase reconstruction, the phase-retrieval vi
point of this paper eliminates the need for a reference w
front. This can be done because the modulus of the w
field at timet is a function of both the modulus and phase
the wave field at earlier and later times. Measurement of
wave-field moduli at more than one time therefore yie
information about both the modulus and phase of the w
field, without the need for interference with a referen
wave.

C. Some open questions

~a! A viable approach to the phase retrieval of both line
and nonlinear multicomponent wave functions may be
utility in the study of topological structures such as skyrm
ons@47,48#. Can the methods of this paper be generalized
the case of multicomponent wave functions, denoted
$C j„(rd ,t)…%, which comprise a set ofK complex scalar
wave functionsC j[C j (rd ,t), j 51, . . . ,K, where rdPRd

and d>2? This (d11)-dimensional multicomponent wav
function might obey a system of coupled nonlinear nond
sipative parabolic equations such as

S ia j]/]t1g j¹d
21b j1V1 (

k51

K

f k j~ uCku!DC j50, ~16!

wherea j ,b j ,g j are real numbers,¹d
2 is the d-dimensional

Laplacian, f k j is a real function of a real variable,k, j are
integers lying between 1 and the numberK of complex sca-
lar componentsC j in the multicomponent wave function
andV[V(rd ,t) is a known real potential. In this context, th
phase problem consists of reconstructing the multicom
nent wave function, given the modulus of each componen
a number of given times.

For a first assault on this problem, one might try

$C j~rd ,t1!%

5 lim
N→`

S )
i 51

M21

P̂i Û i 11,i )
i 5M

2

P̂i Û i 21,i D N

$uC j~rd ,t1!u%.

~17!

Here, $uC j (rd ,t1)u% is an array of the known modul
at t5t1, which forms the initial guess for the desire
multicomponent wave function$C j (rd ,t1)%. The nonlinear
multicomponent time-evolution operator is defined
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Ûm,n$C j (rd ,tm)%5$C j (rd ,tn)%, such that$C j (rd ,t)% is a
solution to Eq.~16!, and P̂i is a projection operator define
by

P̂i$gj~rd ,t i !%[$uC j~rd ,t i !uexp„i arg gj~rd ,t i !…%. ~18!

Additional a priori knowledge may be incorporated by a
propriate generalization of the method given in Sec.
whereP̂i is replaced byP̂i9P̂i .

~b! We have restricted ourselves to the problem of ph
retrieval for nondissipative nonlinear fields, for which th
time-evolution operator is unitary and therefore norm p
serving. If a field whether it be linear or nonlinear, obeys
dissipativeequation—such as might be obtained by maki
a,b,g,V or f complex in Eq.~4!—then the associated time
evolution operator will not be unitary. If such a nonunita
time-evolution operator is used in Eq.~5!, under what cir-
cumstances will the resulting attempt at wave function
construction be successful? If the method is successful,
much dissipation can be tolerated before the method bre
down for a given level of noise in the data?

V. CONCLUSION

We developed and demonstrated a robust noninterf
metric algorithm for reconstructing the wave function of
complex field which obeys a known~211!-dimensional non-
dissipative nonlinear parabolic partial differential equatio
given as input data the modulus of the wave function at th
or more values of the specified evolution parameter~e.g.,
time!. As a special case of this formalism we gave a nume
cal study of the reconstruction of the complex macrosco
wave function associated with a~211!-dimensional Bose-
Einstein condensate, given a series of absorption image
input into the algorithm. In this numerical study, the alg
rithm converged exponentially quickly to the noise floor im
posed by the input data: the root-mean-square error of
reconstructed wave function was in all cases similar to
RMS error in the input data. The presence of both stro
nonlinearities and quantized vortices was seen to increase
rate of convergence of the algorithm. The algorithm opens
the possibility of recovering a movie of the time-depende
macroscopic wave function of a BEC, and thus elucidat
the phase dynamics of the condensate under experime
conditions. This includes situations where the wave funct
possesses topological defects. The method is also applic
to a number of other nonlinear complex wave fields, such
those encountered in paraxial nonlinear optics using b
radiation and matter waves.
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